作业要求、参考文献
作业要求
根据前9个小时的18个features(包含PM2.5)预测第十个小时的PM2.5
参考
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
基本是按照参考代码来的,加入了一些注释更方便理解
另外所有的print都可以去掉,加上只是为了检验是否输出正确的数据
加载训练集数据
train.csv 的資料為 12 個月中,每個月取 20 天,每天 24 小時的資料(每小時資料有 18 個 features)。
1 2 3 4 5
| import sys import pandas as pd import numpy as np
data = pd.read_csv('./hw1_train.csv', encoding = 'big5')
|
处理数据
取出需要的数值部分,即从第四列开始取数据
把输出的数据与train.csv对比即可发现不同
1 2 3
| data = data.iloc[:, 3:] data[data == 'NR'] = 0 raw_data = data.to_numpy()
|
提取特征值1
将数据转置,即将原始4230×18按照每个月分组为12个月中的18个features×480Hours
1 2 3 4 5 6 7 8
| month_data = {} for month in range(12): sample = np.empty([18, 480]) for day in range(20): sample[:, day * 24 : (day + 1) * 24] = raw_data[18 * (20 * month + day) : 18 * (20 * month + day + 1), :] month_data[month] = sample print(month_data)
|
提取特征2
每个月有20*24=480h,每9个小时形成一个data,每个月就会有471个data,总资料数目是471×12笔,每笔数据中有9×18个features;
对应的target(第10个小时的PM2.5)为471 × 12
注意:471是怎么得到的?首先每个月有480个小时,只需要9个小时形成一组来预测第是个小时;举例来看:1-9是一组,预测10;2-10是一组来预测11;以此类推,可以得到471-479是最后一组,预测480
1 2 3 4 5 6 7 8 9 10 11 12
| x = np.empty([12 * 471, 18 * 9], dtype = float) y = np.empty([12 * 471, 1], dtype = float) for month in range(12): for day in range(20): for hour in range(24): if day == 19 and hour > 14: continue x[month * 471 + day * 24 + hour, :] = month_data[month][:,day * 24 + hour : day * 24 + hour + 9].reshape(1, -1) y[month * 471 + day * 24 + hour, 0] = month_data[month][9, day * 24 + hour + 9] print(x) print(y)
|
[[14. 14. 14. ... 2. 2. 0.5]
[14. 14. 13. ... 2. 0.5 0.3]
[14. 13. 12. ... 0.5 0.3 0.8]
...
[17. 18. 19. ... 1.1 1.4 1.3]
[18. 19. 18. ... 1.4 1.3 1.6]
[19. 18. 17. ... 1.3 1.6 1.8]]
[[30.]
[41.]
[44.]
...
[17.]
[24.]
[29.]]
标准化Normalize
标准化方法有好几种,可参考下面找个博客,本文的标准化方法是Z-score方法
https://www.cnblogs.com/lvdongjie/p/11349701.html
1 2 3 4 5 6 7
| mean_x = np.mean(x, axis = 0) std_x = np.std(x, axis = 0) for i in range(len(x)): for j in range(len(x[0])): if std_x[j] != 0: x[i][j] = (x[i][j] - mean_x[j]) / std_x[j] x
|
array([[-1.35825331, -1.35883937, -1.359222 , ..., 0.26650729,
0.2656797 , -1.14082131],
[-1.35825331, -1.35883937, -1.51819928, ..., 0.26650729,
-1.13963133, -1.32832904],
[-1.35825331, -1.51789368, -1.67717656, ..., -1.13923451,
-1.32700613, -0.85955971],
...,
[-0.88092053, -0.72262212, -0.56433559, ..., -0.57693779,
-0.29644471, -0.39079039],
[-0.7218096 , -0.56356781, -0.72331287, ..., -0.29578943,
-0.39013211, -0.1095288 ],
[-0.56269867, -0.72262212, -0.88229015, ..., -0.38950555,
-0.10906991, 0.07797893]])
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| import math x_train_set = x[: math.floor(len(x) * 0.8), :] y_train_set = y[: math.floor(len(y) * 0.8), :] x_validation = x[math.floor(len(x) * 0.8):, :] y_validation = y[math.floor(len(y) * 0.8):, :] print(x_train_set) print(y_train_set) print(x_validation) print(y_validation) print(len(x_train_set)) print(len(y_train_set)) print(len(x_validation)) print(len(y_validation))
|
训练
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| dim = 18 * 9 + 1 w = np.zeros([dim, 1]) x = np.concatenate((np.ones([12 * 471, 1]), x), axis = 1).astype(float) learning_rate = 100 iter_time = 1000 adagrad = np.zeros([dim, 1]) eps = 0.0000000001 for t in range(iter_time): loss = np.sqrt(np.sum(np.power(np.dot(x, w) - y, 2))/471/12) if(t%100==0): print(str(t) + ":" + str(loss)) gradient = 2 * np.dot(x.transpose(), np.dot(x, w) - y) adagrad += gradient ** 2 w = w - learning_rate * gradient / np.sqrt(adagrad + eps) np.save('myweight.npy', w) w
|
0:27.071214829194115
100:33.78905859777455
200:19.913751298197102
300:13.531068193689693
400:10.64546615844617
500:9.277353455475062
600:8.518042045956497
700:8.014061987588418
800:7.636756824775688
900:7.336563740371121
测试
1 2 3 4 5 6 7 8 9 10 11 12 13
| testdata = pd.read_csv('./hw1_test.csv', header = None, encoding = 'big5') test_data = testdata.iloc[:, 2:] test_data[test_data == 'NR'] = 0 test_data = test_data.to_numpy() test_x = np.empty([240, 18*9], dtype = float) for i in range(240): test_x[i, :] = test_data[18 * i: 18* (i + 1), :].reshape(1, -1) for i in range(len(test_x)): for j in range(len(test_x[0])): if std_x[j] != 0: test_x[i][j] = (test_x[i][j] - mean_x[j]) / std_x[j] test_x = np.concatenate((np.ones([240, 1]), test_x), axis = 1).astype(float) test_x
|
array([[ 1. , -0.24447681, -0.24545919, ..., -0.67065391,
-1.04594393, 0.07797893],
[ 1. , -1.35825331, -1.51789368, ..., 0.17279117,
-0.10906991, -0.48454426],
[ 1. , 1.5057434 , 1.34508393, ..., -1.32666675,
-1.04594393, -0.57829812],
...,
[ 1. , 0.3919669 , 0.54981237, ..., 0.26650729,
-0.20275731, 1.20302531],
[ 1. , -1.8355861 , -1.8360023 , ..., -1.04551839,
-1.13963133, -1.14082131],
[ 1. , -1.35825331, -1.35883937, ..., 2.98427476,
3.26367657, 1.76554849]])
预测
1 2 3
| w = np.load('myweight.npy') ans_y = np.dot(test_x, w) ans_y
|
保存结果到csv
1 2 3 4 5 6 7 8 9 10
| import csv with open('my_submit.csv', mode='w', newline='') as submit_file: csv_writer = csv.writer(submit_file) header = ['id', 'value'] print(header) csv_writer.writerow(header) for i in range(240): row = ['id_' + str(i), ans_y[i][0]] csv_writer.writerow(row) print(row)
|